
Community detection in complex networks by dynamical simplex evolution

V. Gudkov,1 V. Montealegre,1 S. Nussinov,1,2 and Z. Nussinov3

1Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
2Tel-Aviv University, School of Physics and Astronomy, Tel-Aviv, Israel

3Department of Physics, Washington University, St. Louis, Missouri 63160, USA
�Received 2 October 2007; revised manuscript received 15 April 2008; published 23 July 2008�

We benchmark the dynamical simplex evolution �DSE� method with several of the currently available
algorithms to detect communities in complex networks by comparing correctly identified nodes for different
levels of “fuzziness” of random networks composed of well-defined communities. The potential benefits of the
DSE method to detect hierarchical substructures in complex networks are discussed.

DOI: 10.1103/PhysRevE.78.016113 PACS number�s�: 89.75.Da, 89.75.Fb, 89.75.Hc

I. INTRODUCTION

Community detection in complex networks is attracting
much interest in many areas. Partitioning a network into
groups of nodes that are more tightly linked �densely con-
nected sets of nodes� is crucial for understanding the struc-
ture, functionality, and evolution of the whole network and
its building constituents. It is useful for many practical pur-
poses including the study of real world network vulnerabili-
ties. However, real world networks are usually very large,
and community detection in complex networks is computa-
tionally very demanding �1�, especially if a high level of
accuracy is required �2�. Many approaches to efficient solu-
tions of this problem have been proposed. These include
spectral analysis and hierarchical clustering methods. More
recently much attention has been drawn to optimization of a
quantity known as modularity �2–6�.

Modularity is essentially a measure of the number of links
inside the detected modules of a network compared with the
expected number of links that a random network with the
same size and distribution of degrees would have. It has been
used in several community detection methods to test the
goodness of their solutions and pick up the best one. For
instance, the method proposed by Girvan and Newman �GN�
�5,6� uses the concept of “betweenness” to achieve a division
algorithm that progressively removes links with the largest
“betweenness” until the network breaks up into components.
This results in several partitions, and the partition with the
optimal modularity value is chosen. However, the properties
of modularity have not been fully studied, and the resolution
of the clustering method based upon its optimization is in-
trinsically limited in a manner depending on the number of
links in the network �7�. The existence of a resolution limit
for community detection implies that it is a priori impossible
to tell whether a module contains substructure �that is if
smaller clusters can be refined inside it�. This is particularly
important if the network has a self-similar character �e.g., a
scale-free network�, in which case a single partition does not
describe the structure completely; and a tree-like partition
that digs into different levels of structure is more appropriate.

II. THE ALGORITHM

In this paper we use the dynamical simplex evolution
�DSE� method �8� to perform community identification in

computer simulated networks and compare it with the meth-
ods mentioned above in Refs. �2–6�. The DSE algorithm has
a broad range of potential applications such as testing graph
isomorphism �9,10�, searching the largest cliques �11�, and
hard graph theoretical problems in general �12�. The DSE
method is particularly useful for community detection and
for finding hierarchical structures in networks �13�. Some of
its features are a unique solution, the preservation of all links
at all stages of the calculation, and the possibility of analyz-
ing the network’s community structure at different scales
without additional computation in each step of the algorithm.
Let us describe the basic features of the DSE method.

A. Dynamical simplex evolution

A network consisting of n nodes connected by links can
be represented by means of an n�n connectivity matrix C.
If i and j are the labels of two nodes which are connected in
the network, Cij =1, and Cij =0 if there is no link between
them. In general, one can assign different values to the ele-
ments Cij so as to describe the nature and intensity of con-
nections. A single network can be represented by many ma-
trices which are related by a similarity transformation C�
=U−1CU with U �U−1=U†� an n�n matrix affecting the
permutation of rows and columns. The problem of deciding
whether two connectivity matrices correspond to the same
network is very difficult. We cannot try all the n! permuta-
tions of the labels of the n nodes in the network in search for
the particular connectivity matrix that most clearly exhibits
the clusters. �We use the word cluster or community indis-
tinctly to refer to a group of nodes which belong to a given
network and which are relatively strongly interconnected yet
weakly connected to nodes outside the group.�

Let us assume that a large subset of nodes in the network
indeed divides into k fairly well-defined clusters C1 , . . . ,Ck
with n1 , . . . ,nk nodes, respectively. If the labeling is such that
all nodes belonging to the same cluster are contiguous, the
representative connectivity matrix is almost block diagonal:
the n1�n1 , . . . ,nk�nk submatrices along the diagonal are
also the connectivity matrices for the first, second, up to the
kth cluster. By assumption these matrices have a larger pro-
portion of nonzero elements than the regions of the matrix
outside the diagonal blocks. This nice feature completely dis-
appears after a massive relabeling of the nodes is performed
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�i.e., massive joint reshufflings of columns and rows of the
connectivity matrix�. The whole matrix will then have a
roughly homogeneous distribution of ones and zeroes. Our
goal is essentially to reconstruct the original convenient al-
most block diagonal form which exhibits the clusters without
resorting to combinatorial alternatives. To this end we intro-
duce the DSE algorithm.

The n nodes are represented by n point masses in an
n−1 dimensional space at locations r�i�t� where i=1, . . . ,n.
To start at t=0 the r�i�t� in a completely symmetric and un-
biased manner we place them at the n vertices of a symmet-
ric simplex inscribed inside the unit sphere in n−1 dimen-
sions so that r�i

2=1 holds for all vertices. Symmetry requires
all r�i ·r� j to be equal for any i� j. Therefore, using �i=1

n r�i=0
and r�i

2=1 we have

��
i=1

n

r�i�2

= �
i=1

n

r�i
2 + 2�

i�j

n

r�i · r� j = n + 2
n�n − 1�

2
r�i · r� j = 0

�1�

and

r�i · r� j = −
1

n − 1
for all i � j, i, j = 1, . . . ,n . �2�

The distance between any pair of vertices of the starting
simplex of the dynamical simulation is therefore

�r�i − r� j� =	 2n

n − 1
. �3�

The specific coordinates of the n vertices can be recursively
fixed as follows. Let the vertices of the n−1 simplex �in
n−2 dimensions� be �� 1 , . . . ,�� n−1 with �� j vectors with
known components

�� j = �
k=1

n−2

� jkêk, �4�

where êk is the unit vector along the kth axis. Then, choose
the position of the nth vertex of the n-simplex �in n−1 di-
mensions� to be r�n= ên−1. This requires adjusting the posi-
tions of the other n−1 vertices in the n−1 dimensional
space. We write
those as linear combinations of the “old” vectors �� i �in n
−2 dimensions� and the unit vector in the new spatial direc-
tion

r�i = �n�� i −
1

n − 1
ên−1, i = 1, . . . ,n − 1. �5�

The coefficient of −1 / �n−1� in the second term appears be-

cause �� i · ên−1=0 and r�i ·r�n=−1 / �n−1� �from Eq. �1��. Nor-

malization requires r�i
2=1, and since �� i

2=1, we find that �n

=	1−1 / �n−1�2. Thus, starting with a two simplex with �� 1

= ê1, and �� 2=−ê1, we inductively generate the n simplex.

Next we postulate attractive “forces” F� ij in the n−1 di-
mensional space between point masses corresponding to
pairs of nodes which are connected in the network. This
groups strongly interconnected nodes, moving them to spa-

tial proximity so as to help us identify the clusters. As the
forces displace the point masses representing the nodes from
their original symmetric positions the mutual distances �r�i
−r� j� keep changing and the simplex evolves.

When Cij�0 the force between the point masses r�i�t� and
r� j�t� is postulated to be

F� ij = Sijf��r�i − r� j��
r�i − r� j

�r�i − r� j�
. �6�

It acts in the direction of r�i−r� j. To retain the initial sym-
metry and avoid biasing we take the same force law f�r� for
all connected pairs.

The only way information about the specific network of
interest is communicated to the dynamical n body system is
via the overall strengths of the forces Sij. In particular Sij
vanishes if Cij =0.

The point masses can move according to Newtonian dy-
namics,

mi
d2r�i

dt2 = F� i = �
j

F� ij . �7�

In order to avoid “overshoots” and oscillations we add
damping via viscous frictional forces, simulating the motion
of the vertices as the motion of point masses in a liquid with
a high viscosity,

mi
d2r�i

dt2 + �i
dr�i

dt
= F� i. �8�

If we adopt the extreme �i�mi inertial effects become
negligible and we have first order “Aristotelian dynamics.”
This simplifies the calculations of the subsequent positions.

Discretizing

�i
dr�i

dt
= F� i �9�

by using time increments � we have

r�i�t + �� = r�i�t� +
�

�i
F� i„r�i�t�…, i = 1, . . . ,n . �10�

To preserve the symmetry we take all masses �and sepa-
rately all viscosities� to be equal �i=�, mi=m.

The attractive central forces can be derived from a pair-
wise potential, i.e.,

f�r� = −
dU�r�

dr
. �11�

With overall potential energy

U�r�1, ¯ ,r�n� = �
i�j

SijU��r�i − r� j�� . �12�

At the equilibrium positions of the dynamical system

dr�i

dt
= F� i = 0� , �13�

and the sets of vectors 
r�i� for which Eqs. �13� are satisfied
then are stationary points of U�r�1 , . . . ,r�n�. There is consider-
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able freedom in choosing the force law f�r�. We find the
simple choice of forces with constant magnitude independent
of the mutual distances between vertices particularly useful.
This choice tends to yield only one minimum of the multi-
dimensional potential, and, as a consequence, a single
�unique� solution.

If there are only attractive forces, the vertices rapidly col-
lapse to a single point representing the whole network even
when the vertices are constrained to stay on the surface of
the unit hypersphere on which they are originally placed. The
introduction of repulsive forces between point masses repre-
senting disconnected nodes reduces the rate of this collapse
allowing the vertices the opportunity to cluster slowly via the
attractive forces.

The maximal number of possible connections in a net-
work is M =n�n−1� /2, where n is the number of nodes in the
network. In practical complex networks �real world and/or
simulated� the number of links is only a tiny fraction of M.
For the current analysis we choose the strengths of the forces
which are “free” parameters of the algorithm according to
the density of the network connections. Thus we weigh the
strengths of the attractive �repulsive� forces using the ratio of
the degrees of the nodes and the total number of nodes in the
network by defining �i=di /n, where di is the degree of node
i and n is the total number of nodes in the network. For a
connectivity matrix Cij composed of zeros and ones, �Cij
−1�=−1 if the nodes i and j are disconnected or i= j and
�Cij −1�=0 if nodes i and j are connected. Since the forces
are directed along the unit vector �r�i−r� j� / �r�i−r� j�, we use the
positive Cij to generate the attractive forces between con-
nected vertices and the negative �Cij −1� for the repulsive
forces between disconnected vertices. Then the strengths Sij
in Eq. �6� are then chosen as

Sij = ��1 − �i�Cij + �i�Cij − 1� , i � j ,

0, i = j .
 �14�

The two terms in Eq. �14� for i� j imply that when the
degree of connectivity of the ith node increases, the effect of
the attractive forces is reduced while the effect of the repul-
sive forces increases. Similarly, if the degree of the node is
very small, the attractive forces are enhanced while the re-
pulsive forces are diminished. This has the extra benefit that
vertices with large degree of connectivity, which are more
likely to be highly structural �and belong to cores of commu-
nities�, are “harder” to attract, while vertices with low degree
of connectivity will be easily attracted to other vertices thus
helping in the process of community formation on different
scales.

The dynamics of the vertices is governed by the forces
�from the connectivity matrix� and the vertices displacements
vary from vertex to vertex according to their mutual connec-
tivities. Thus, after few evolution steps the new vertex posi-
tions correctly represent the cluster structure of the network:
the mutual distances between vertices belonging to the same
cluster become systematically smaller than the distances be-
tween vertices from different clusters. In the extreme ideal
case where the clusters are totally disconnected from each
other �zero links between different communities�, the attrac-

tions group the connected nodes as single subnetworks, and
the repulsions sharply separate the grouped subnetworks
from each other. As the number of links between clusters
increases, the attractions between connected members in dif-
ferent clusters can after sufficiently many steps link the sub-
networks to form a larger community. The different clusters
can merge and collapse to a single point.

In each step of the evolution the DSE algorithm calculates
the n−1 components of all forces. The number of attractive
forces is �d�n /2. If �d� the average degree of nodes in our
network is fixed independent of n, then the algorithm using
attractions only requires O�n2� calculations. Introducing re-
pulsive forces leads to higher computational complexity
O�n3�. Since the algorithm is equally effective for cluster
resolution both with and without repulsive forces, the version
with only attractive forces is preferable for the case of large
networks.

B. Mutual distances

We use the term “mutual distance” to refer to the spatial
separation between any two nodes represented as vertices of
the n−1 dimensional simplex. The mutual distance between
two nodes labeled i and j is given by dij = �r�i−r� j�. In order to
identify the communities, an adequate maximum threshold
for the mutual distances must be chosen �in the n−1 dimen-
sional space�. The threshold is a cutoff value applied to the
mutual distances to classify the nodes according to their spa-
tial separation in the n−1 dimensional space. More specifi-
cally let 	 be the value for the threshold, then two nodes with
labels i and j belong to the same community if �r�i−r� j�
	.
Filtering the mutual distances in this way only tells which
couples of nodes are close enough to belong to the same
community. To build the communities we need to identify
which of the couples of nodes filtered belong to the same
local neighborhood. We perform the partition of the network
as follows:

Let V be a vector with n components, K= 
Q1 , . . . ,Qn�.
Initialize Qi= 
i�, Vi= i; for all i=1, . . . ,n;

1. for i=1, . . . ,n−1
2. for j= i+1, . . . ,n

3. if dij 
	 and Vj =Vj

4. Vj = j, Qi=Qi� 
j�, Qj =�

5. end if

6. end for

7. end for

8. Remove all remaining Qi=� from K.

The routine begins by setting a partition of the networks
K made of singlets Qi containing the labels of the individual
nodes. This is the worst case for a partition of the network
and it is obtained if no distance between nodes is smaller
than the threshold. The routine then merges the singlets to
the formed clusters if the distance between one of the mem-
bers of the cluster and the singlet is smaller than 	. At the
end of the routine the class K is the desired partition of the
network. Note that the number of calculations needed to par-
tition the network is n�n−1� /2 and it only needs to be per-
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formed once so no computational complexity is added to the
DSE algorithm in this process.

Thus we can define a community as the maximal con-
nected neighborhood of nodes of the n−1 dimensional sim-
plex whose maximum mutual distance is bounded by a given
maximum value 	.

The success of the community separation in the DSE
method lies on the fact that nodes belonging to tightly linked
groups approach each other to a distance which is consider-
ably smaller than the average distance between nodes in dif-
ferent communities.

Since this method groups the vertices according to how
tightly the nodes are connected to each other, finer substruc-
ture detection can be achieved by choosing a lower threshold
providing better resolution. At each step of a single run of
the algorithm one can apply a set of different thresholds. This
provides immediate �spectroscopic� resolution for the cluster
and all subcluster structure of the network. Note that thanks
to our choice of constant forces which do not fall off with
distance, this happens at all scales of mutual distances.
Choosing a relatively large threshold of mutual distances �a
value chosen from the distribution of mutual distances at a
high percentile rank� captures the “big picture” of the net-
work’s structure. If the identified communities are treated
recursively as subnetworks by the same procedure of apply-
ing thresholds chosen from the spectrum of each subnet-
work’s mutual distances distribution the resolution of the
identified structure of the network is improved at different
scales thereby identifying possible hierarchical structures.

III. RESULTS AND BENCHMARK

It has become customary to test the efficiency of cluster-
ing algorithms on a set of computer generated random net-
works with a well-defined modular structure �14�. The
benchmark networks have 128 nodes, a total of 1024 links,
and are composed of four clusters containing 32 nodes each.
The nodes are connected with a probability pin �pout� for
members of the same community �different communities�, in
a way such that the average degree of every node in the
network is �d�=16 �this controls the average number of links
zout that each node has with members of other communities�.
We will use the term “external degree” when referring to zout.
As zout increases, the numbers of connections inside each
cluster decreases, so that the structure becomes fuzzier and
more difficult to identify. We can shuffle the labels of the
nodes and apply the DSE algorithm to the shuffled network.
To relate the communities detected by the algorithm with the
“true” communities with the nonshuffled labels we use the
following procedure. Let 
Ci�i=1,2,3,4 be the sets of nodes de-
fining clusters 1, 2, 3, 4, respectively, in the original random
network and 
Dj� j=1,. . .,m be the clusters detected by the algo-
rithm. The following provides a natural procedure for finding
the correspondence between the original clusters and those
detected by the algorithm. Let us define Mij = �Ci�Dj� to be
the number of nodes shared by sets Ci and Dj. We will refer
to the matrix Mij as “confusion matrix” since this term is
typically used for it.

Consider a random network generated by the procedure
mentioned above with an average external degree zout=4.92

�this is the maximal value of zout which still allows a neat
separation of the communities still observable with very few
steps�. We shuffle the locations of the nodes in the connec-
tivity matrix of the network and let the DSE algorithm run
for only six steps.

Figure 1 shows the histograms of the mutual distances for
every pair of nodes in the network at steps 1, 2, and 6 �row
1�a��, for connected nodes only �row 1�b�� and for discon-
nected nodes only �row 1�c��. The separation of the commu-
nities manifests via the splitting of the single hump shown in
step 1 �the first column� into two humps during subsequent
steps. Two distinct humps begin to emerge at step number 2
�second column� and the humps are sharply separated at step
6 �third column�. For all the histograms where two humps
are visible, the left-hand hump corresponds to the mutual
distances between nodes inside the same community while
the right-hand hump corresponds to the mutual distances be-
tween nodes belonging to different communities.

Note that because of the symmetry of the matrix �the clus-
ters have exactly the same sizes and the same densities� we
see only two of these humps, but if the symmetry is broken
we should expect to see a superposition of humps, each cor-
responding to a different cluster with a different density and
size.

This demonstrates that the structure can be resolved suc-
cessfully. Step 3 of row 1�b� shows that the maximum dis-
tance between nodes belonging to the same community is
approximately 17 �in the units for mutual distances�, thus, by
setting the maximum distance threshold in the surroundings
of about 20, one can expect a good identification of the com-
munities. In order to find the threshold systematically for all
the simulated networks, we make use of the cumulative dis-
tribution of the mutual distances for connected nodes. Figure
2�a� shows the distribution of mutual distances of only con-
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FIG. 1. Histograms of the mutual distances between all pairs of
nodes �row �a��, between only connected nodes �row �b�� and be-
tween disconnected nodes only �row �c��. The columns correspond
to steps 1, 2, and 6 of the evolution of a generated random matrix
with 128 nodes and four clusters, each containing 32 nodes. For
each histogram the ordinate axis represents the number of pairs of
nodes ND versus their mutual distances D �abscissa�.
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nected nodes �the same plot in the third step of the second
row of Fig. 1�. The vertical dashed line shows the threshold
	=15.45. The value of 	 can be found observing Fig. 2�a�.
The horizontal line indicates that the plateau occurring at
percentile 69.8 of the mutual distances corresponds to a cor-
rect choice of 	=15.45.

The percentage of the number of links between members
belonging to the same community compared to the total
number of links in the network can be calculated as �= �1
−zout / �d���100%. In our example we have zout=4.92 and
�d�=16 so �=69.25. � is in very close proximity to the value
69.8 of the percentile used to find the threshold. This is not a
coincidence as all matrices show the same behavior, and it
indicates that this procedure for choosing the threshold is
accurate, especially for small values of zout. Using the meth-
ods described in �2,6� we find for this network a fraction of
correctly identified nodes of p=0.99 and a normalized mu-
tual information of 0.99, confirming the efficiency of the
algorithm and our choice of threshold. These methods are
described further in the following section.

On a technical note, the mutual distances are computed
along the steps of the simplex evolution as they are required
to find the forces between the nodes in the network. Since
the threshold is determined exclusively from the distribution
of the mutual distances, its calculation does not add any
computational complexity to the algorithm.

For the case of a network composed of substructures with
different sizes and topologies, the histogram would not be as
simple, but rather would reflect the internal structure of all
clusters and subclusters; then the hierarchical structures can
be identified by means of filtering the mutual distances be-
tween connected nodes and by grouping the nodes within
adequate ranges of the filtered mutual distances.

In Ref. �6� a criterion known as “fraction of correctly
identified nodes” has been proposed to test the efficiency of
the community detection algorithms. It essentially looks for
the detected community which produces the maximal num-
ber of nodes belonging to the original “true” communities. If
such community cannot be found, or is undecided which is
the maximal set, the nodes are not considered as correctly
classified. In terms of the confusion matrix, we can describe

the method as follows. The original cluster Ci corresponds to
the detected cluster Dk�i� for which the number of shared
nodes is maximal. If k�i� is not an injective function the
nodes associated to Ci are considered incorrectly classified.

Hence, we can measure the efficiency of the detection
method by finding the fraction of correctly identified nodes p
for each value of zout. The fraction p is then p
= ��iMik�i�� /128.

This benchmark test for the DSE clustering method yields
excellent results as shown in Fig. 3 �the abbreviations are the
same used in �4��. This figure presents the results of the
algorithm test given in the paper �4�. Our results correspond
to the line with stars; all other lines correspond exactly to
Fig. 1 of paper �4�. �For detailed discussions on the algo-
rithms used to obtain these lines see �4–6�, and references
therein.� The value of p, corresponding to each value of zout
for the DSE algorithm, is obtained after averaging over 50
runs �each run is the sequence of 30 steps�.

It can be seen that the values of the fraction of correctly
identified nodes for the DSE algorithm are close to the val-
ues obtained with the simulated annealing �SA� model, their
difference is very small up to a value of zout=6. For average
external degrees larger than 6.5 the DSE algorithm shows a
significantly better performance than the opinion changing
rate-Hegselmann and Krause �OCR-HK� method. Consider-
ing the fact that the computation required by the SA model
can be very demanding �15�, this is quite encouraging. The
DSE algorithm is thus very efficient in identifying the nodes,
and at zout=8 the average fraction of correctly identified
nodes is p�0.75, which is a great improvement compared to
the OCR methods �p�0.4 for OCR and p�0.5 for OCR-
HK�. Furthermore, the DSE algorithm provides additional
detailed spectroscopic information about internal structures
of subclusters in the same run of the algorithm automatically,
which is an excellent feature for analysis of networks. It
should be noted that it is beyond the scope of this paper to
cover all existing algorithms for community detections �for
some other approaches see, for example, �16–18�, and refer-
ences therein�. We only address the set of algorithms being
published with the emphasis of comparisons to other ones

0 20 40 60
0

50

100

150
(a)

N
um

be
r

of
N

od
es

Mutual Distance
0 20 40 60

0

20

40

60

80

100

(b)

P
er

ce
nt

ile
Mutual Distance

Cutoff=69.8%

ε=15.45ε=15.45
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the DSE evolution of a simulated matrix with 128 nodes and zout

=4.92. The threshold 	=15.45 is shown as a vertical dashed line.
�b� The cumulative distribution for the mutual distances of the same
matrix in �a�. The threshold 	=15.45 corresponds to the percentile
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using the standard benchmark �considered here� and have
been shown to be computationally efficient.

The method of correctly identified nodes serves as a first
approach to compare the efficiency of clustering methods.
However, as the authors of Ref. �2� note, the p method is
questionable when the number of links outside communities
zout becomes large as it rewards the identification of smaller
clusters found within each of the original communities. The
authors of �2� propose instead using the quantity known as
normalized mutual information �NMI� HNMI as a more dis-
criminatory measure for this purpose. If the detected parti-
tion is exactly the same as the “real” one HNMI=1. For the
worst case when the detected partition is totally independent
of the real partition �for instance if the algorithm detects only
one community, or the nodes are distributed evenly in all
communities� the distributions of the real and detected com-
munities are independent, implying HNMI=0.

For the NMI benchmark, we add the results of the DSE
algorithm to the ones found in Ref. �2�. This is shown in Fig.
4. The plot shows a comparison of the DSE algorithm versus
the fast Newman �FN� and the extremal optimization �EO�
methods. The performance of the DSE is very good for large
values of the external degree �zout�5� compared to the EO.

One should note that the normalized mutual information
is symmetric under the exchange of the two partitions. This
feature and others mentioned in �2� make the NMI criterion
more versatile than the fraction of correctly identified nodes.
This symmetry is a consequence of the symmetry observed
in the definition of the mutual information, and is exploited
further by yet another criterion known as the variation of
information �HVI�.

The variation of information �HVI� was originally pro-
posed as a criterion for comparing partitions �19�. It can also
be used to compare the performance of community detection
algorithms by means of using a “distance” on the space of
partitions.

As shown in �19�, the variation of information is a true
metric in the space of all clusterings �partitions�. It satisfies

the metric axioms of non-negativity, symmetry, and the tri-
angle inequality. Additionally, HVI displays a number of nice
features, for instance it depends only on the relative sizes of
the clusters, and it is bounded by a maximum value of
log2�n� where n is the number of nodes in the network. We
use base 2 logarithms so that our units are bits. This extreme
bounding value happens if one of the partitions consists of
all singlets of nodes �i.e., {
1� , . . . , 
n�}� and the other parti-
tion consists of the whole network �i.e., {
1, . . . ,n�}�. HVI is
thus interpreted as a measure of the distance between two
partitions of the same network in the space of all clusterings.
The larger the distance HVI, the more different the two par-
titions are.

If we calculate the “distance” HVI between two arbitrary
partitions over a network made of 128 nodes, their maximum
possible value of HVI is log2�128�=7 bits. Nevertheless, the
real partition used in the analysis of the 128 nodes ad hoc
networks is not arbitrary since it is known to be made of four
communities each composed of 32 nodes. This tells us that
the real partition contains log2�4�=2 bits of information.
Thus for any detected partition of this set of generated net-
works, the maximum possible variation of information which
can be obtained �between the real and the detected partition�
is log2�128�−log2�4�=5 bits allowing us to normalize HVI as
HNVI=1−HVI /5 bits. In this way, HNVI is a form of HVI com-
parable to the criterions of “fraction of correctly identified
nodes” and the normalized mutual information within the
context of the ad hoc networks.

This allows us to present our results for all the three cri-
terion methods in the same plot in the same range as shown
in Fig. 5. The HNVI criterion shows larger values than the
NMI, this is possibly due to the fact that the NMI method
“punishes” some of the configurations indistinctly �for in-
stance, those which yield HNMI=0�, while the HVI criterion is
more sensitive.
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FIG. 4. Benchmark of 30 steps of the dynamical simplex evo-
lution �DSE� versus the fast Newman �FN� and the extremal opti-
mization �EO� algorithms shown in Ref. �2�. We present both meth-
ods %p �fraction of correctly identified nodes� in hollow symbols
and normalized mutual information �NMI� in filled symbols. The
DSE algorithm shows very good performance using both criterions
and falls down much slower for large external degrees zout than the
NF and EO.

4 5 6 7 8

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

z
out

%p criterion
NMI
H

NVI
= 1 − H

VI
/ 5

FIG. 5. Three criterion methods for comparing partitions evalu-
ating the performance of the DSE algorithm. The %p criterion
known as fraction of correctly identified nodes, the normalized mu-
tual information �NMI�, and a normalized version of the variation
of information �NVI�, presented as HNVI=1−H1-VI/5 �the normaliza-
tion factor 5 comes from the maximum distance in clustering space
between any partition of the ad hoc networks and the “true”
partition�.

GUDKOV et al. PHYSICAL REVIEW E 78, 016113 �2008�

016113-6



IV. CONCLUSION

In conclusion the general DSE method has several attrac-
tive features regarding the purpose of detecting communities
in complex networks. First, it does not require discarding �or
weakening� connections progressively until a partition is ob-
served, allowing the nodes to interact naturally, utilizing the
complete information of the network at every stage of the
algorithm. It avoids possibly biasing the results by modifying
the network structure. Secondly, it permits the identification
of substructures at different scales by setting adequate
thresholds in the mutual distances for every step, thereby
also adjusting the resolution. For example, for fuzzy struc-
tured networks �when the number of connections between
communities is large�, the resolution in cluster identification
can be enhanced by increasing the number of steps and/or
decreasing the step sizes. This is extremely important when
the network has a self-similar nature, and hierarchical clus-

tering is expected. For our analysis we have used three cri-
terions for comparing partitions, they are the fraction of cor-
rectly identified nodes, normalized mutual information
�NMI�, and variation of information �HVI�. Since the HVI
criterion possesses all the properties to be a true metric for
the space of partitions, and it distinguishes network configu-
rations that the NMI method cannot, we think the HVI
method is more appropriate for this type of benchmark be-
tween clustering algorithms. Our analysis has shown that the
DSE algorithm is very efficient compared to other methods
based on its resolution power and moderate computational
complexity.
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